Respuesta :

There is no solution for b.

The rule for operations done in exponents are

(a) [tex]a^m*a^n=a^{m+n}[/tex]

(b) [tex]a^m/a^n=a^{m-n}[/tex]

(c)[tex](1/a)^m=a^{-m}[/tex]

Given the expression (one-twelfth) superscript negative 2 b baseline times 12 superscript negative 2 b+2 baseline = 12

the expression (one-twelfth) superscript negative 2 b simplifies that [tex](1/12)^{-2b}[/tex]

12 superscript negative 2b+ 2 simplifies that [tex]12^{-2b+2}[/tex]

so the final expression (one-twelfth) superscript negative 2 b baseline times 12 superscript negative 2 b+2 baseline = 12 will be

[tex](1/12)^{-2b}[/tex] * [tex]12^{-2b+2}[/tex] =12

⇒[tex]12^{-(-2b)}\\[/tex] * [tex]12^{-2b+2}[/tex] =12

⇒[tex]12^{2b[/tex] * [tex]12^{-2b+2}[/tex] =12

⇒[tex]12^{2b-2b+2}[/tex]=12¹

equating the exponts of the both sides

⇒2b-2b+2=1

⇒2=1 (not accepted because un-logic condition)

Therefore there is no solution.

Learn more about exponent

here: https://brainly.com/question/11975096

#SPJ10