Answer:
Standard Deviation is s = 2.9
Step-by-step explanation:
Count = [tex]N[/tex] = 5
Mean = [tex]x^-[/tex] = 9
Variance = [tex]s^2[/tex] = 8.5
SD Formula = [tex]s = \sqrt \frac{1}{N - 1} (x_{i} - x^-)^2[/tex]
Variance Formula[tex]s^2 = \frac{(x_{i} - x^-)^2}{N- 1}[/tex]
Step 1: Calculate the variance
[tex]= \frac{(7-9)^2 + (5-9)^2 + (10-9)^2 + (11-9)^2 + (12 -9)^2 }{5-1}[/tex]
[tex]=\frac{34}{4} = 8.5[/tex]
Step 2: Apply square root/SD formula
[tex]=\sqrt{8.5} = 2.9[/tex]