contestada

Please help asap! 30 points
Given that f(x)=11, g(x)=x^2-6x+3, and h(x)= -x+4, find the function (g •h)(x).

Respuesta :

Answer:

[tex](g \cdot h)(x)=x^2-2x+23[/tex]

Step-by-step explanation:

For composite functions, it's important to understand what the functions mean:

[tex](g\cdot h)(x)[/tex]  which is read as "g of h, of x" means [tex]g ( \text{ }h(x) \text{ })[/tex] which is read as "g of, h of x" (with slight pauses at the comma).  This means that x goes into the h function, and the output of the h function goes into the g function.

Putting "x" into the h function

[tex]h(x)=-x+4[/tex]

Since it is just "x" going into the h function, the function as written is the output when x is the input.

Putting the h function output, into the g function

[tex]g(x)=x^2-6x+3[/tex]

[tex]g(h(x))=(h(x))^2-6(h(x))+3[/tex]

Substitute

[tex]g(h(x))=(-x+4)^2+-6(-x+4)+3[/tex]

Squaring means the something multiplied by itself

[tex]g(h(x))=(-x+4)*(-x+4)+-6(-x+4)+3[/tex]

Use distributive property; (some people know binomial distribution as "FOIL" -- First, Outer, Inner, Last):

[tex]g(h(x))=[(-x)(-x)+4(-x)+4(-x)+4*4)]+[6x+4]+3[/tex]

Simplify the binomial terms:

[tex]g(h(x))=[x^2-8x+16]+[6x+4]+3[/tex]

Group like terms:

[tex]g(h(x))=x^2-2x+23[/tex]

Remember that [tex](g\cdot h)(x)[/tex]  means [tex]g ( \text{ }h(x) \text{ })[/tex]

[tex](g \cdot h)(x)=x^2-2x+23[/tex]

So, [tex](g \cdot h)(x)=x^2-2x+23[/tex]