Respuesta :

Answer:

w = -1/5

OR

w = -3

Step-by-step explanation:

Given equation:

−16w-3 = 5w²

Solution:

Subtracting 5w^2 from both sides,we get

  • -16w-3-5w² = 5w² - 5w²
  • -5w²-16w-3=0

Factor the LHS of this equation using middle term factor:

  • (-5w²-1)(w-3)

Now,

  • [tex]( - 5w - 1) = 0 \: \: \: \: \: \: \: \: ...(1)[/tex]
  • [tex](w - 3) = 0 \: \: \: \: \: \: \: \: \: \: ... (2)[/tex]

Solving for equation 1:

  • [tex] - 5w = 0 + 1[/tex]
  • [tex] - 5w = 1[/tex]
  • [tex] \boxed{w = - \cfrac{1}{5} }[/tex]

Solving for equation 2:

  • [tex]w - 3 = 0[/tex]
  • [tex]w = 0 - 3[/tex]
  • [tex] \boxed{w = - 3}[/tex]

[tex] - 16w - 3 = 5 {w}^{2} \\ \\ 0 = 5 {w}^{2} + 16w + 3 \\ \\ 5 {w}^{2} + 16w + 3 = 0 \\ \\ 5 {w}^{2} + w + 15w + 3 = 0 \\ \\ (5 {w}^{2} + w) + (15w + 3) = 0 \\ \\ w(5w + 1) + 3(5w + 1) = 0 \\ \\ (w + 3)(5w + 1) = 0. [/tex]

The value of w is -3 and -1/5 .