Answer:
C. 647 square units
Step-by-step explanation:
To find the shaded area, subtract the area of the unshaded square from the area of the octagon.
Area of the octagon
[tex]\textsf{Area of a regular polygon}=\dfrac{n\:l\:a}{2}[/tex]
where:
- n = number of sides
- l = length of one side
- a = apothem
Given:
Substitute the given values into the formula and solve for A:
[tex]\implies \textsf{Area}=\sf \dfrac{8 \cdot 13 \cdot 15.69}{2}[/tex]
[tex]\implies \textsf{Area}=\sf \dfrac{1631.76}{2}[/tex]
[tex]\implies \textsf{Area}=\sf 815.88\:\:square \:units[/tex]
Area of the square
[tex]\implies \textsf{Area}=\sf 13^2=169 \:\:square \:units[/tex]
Area of the shaded region
= area of the octagon - area of the square
= 815.88 - 169
= 646.88
= 647 square units (nearest square unit)