Respuesta :

Answer:

[tex] \cfrac{61}{24} [/tex]

Step-by-step explanation:

Given expression:

[tex] \cfrac{2}{3} + \bigg(\cfrac{5}{2} \bigg) {} ^{ 2} \times \cfrac{3}{10} [/tex]

Solution:

Simplify using PEMDAS.

[tex] = \sf \cfrac{2}{3} + \cfrac{25}{4} \times \cfrac{3}{10} \\ \\ = \cfrac{2}{3} + \cfrac{15}{8} \\ \\ = \cfrac{16 +45 }{24} \\ \\ = \boxed{\cfrac{61}{24} }[/tex]

Done!

Answer:

[tex]\frac{61}{24}[/tex]

Step-by-step explanation:

[tex]\frac{2}{3}[/tex] + ( [tex]\frac{5}{2}[/tex] )² × [tex]\frac{3}{10}[/tex] ← evaluate exponent

= [tex]\frac{2}{3}[/tex] + [tex]\frac{25}{4}[/tex] × [tex]\frac{3}{10}[/tex] ← evaluate multiplication ( cancel 25 and 10 by 5 )

= [tex]\frac{2}{3}[/tex] + [tex]\frac{5}{4}[/tex] × [tex]\frac{3}{2}[/tex]

= [tex]\frac{2}{3}[/tex] + [tex]\frac{15}{8}[/tex] ← evaluate addition

= [tex]\frac{2(8)}{3(8)}[/tex] + [tex]\frac{15(3)}{8(3)}[/tex]

= [tex]\frac{16}{24}[/tex] + [tex]\frac{45}{24}[/tex]

= [tex]\frac{61}{24}[/tex]