Respuesta :

Answer:

2x(x^2 - 3)(x^2 + 9)

Step-by-step explanation:

2x^5 + 12x^3 − 54x

2x(x^4 + 6x - 27)

Since -3 + 9 = 6 and -3 x 9 = -27:

2x(x^2 - 3)(x^2 + 9)

Answer:

[tex]2x(x^2-3)(x^2+9)[/tex]

Step-by-step explanation:

Given polynomial:

[tex]2x^5+12x^3-54x[/tex]

Factor out the common term [tex]2x[/tex]:

[tex]\implies 2x(x^4+6x^2-27)[/tex]

To factor the trinomial [tex]x^4+6x^2-27[/tex]:

[tex]\textsf{Let }u=x^2 \implies u^2+6u-27[/tex]

Factor the quadratic by finding two numbers that multiply to -27 and sum to 6:  9 and -3

Rewrite the middle term as the sum of these two numbers:

[tex]\implies u^2+9u-3u-27[/tex]

Factorize the first two terms and the last two terms separately:

[tex]\implies u(u+9)-3(u+9)[/tex]

Factor out the common term (u + 9):

[tex]\implies (u-3)(u+9)[/tex]

Substitute back [tex]u=x^2[/tex]:

[tex]\implies (x^2-3)(x^2+9)[/tex]

Therefore, the factored form of the given polynomial is:

[tex]\implies 2x(x^2-3)(x^2+9)[/tex]