Respuesta :

Answer:

y=3 (1/3)x

Step-by-step explanation:

On a graph, the closest graph you pictured is this answer

Answer:

y =  [tex]3 (\frac{1}{3} )^{x}[/tex]

Step-by-step explanation:

Step 1:

Check the y-intercept; in the graph, when x = 0, y = 3. Which equation satisfies this?

y = [tex]\frac{1}{3}[/tex] [tex](3)^{x}[/tex] = [tex]\frac{1}{3}[/tex] [tex](3)^{0}[/tex] =        [tex]\frac{1}{3}[/tex]      ❌

y = [tex]3 (\frac{1}{3} )^{x}[/tex]  = [tex]3 (\frac{1}{3} )^{0}[/tex]  = 3          ✅

y =  [tex](\frac{1}{2} )^{x}[/tex] + 2  = [tex](\frac{1}{2} )^{0}[/tex] + 2 = 3  ✅

So the last two equations are possible.

Step 2:

Now check the y-value on the graph for any other x-value, whose corresponding y-value can be easily estimated from the graph.

For example, when x = 2, the y-value is between 0 and 1.

• 2nd equation: y = [tex]3 (\frac{1}{3} )^{x}[/tex]  =  [tex]3 (\frac{1}{3} )^{2}[/tex] = 0.333               ✅

• 3rd equation:  y =  [tex](\frac{1}{2} )^{x}[/tex] + 2 = y =  [tex](\frac{1}{2} )^{2}[/tex] + 2 = 2. 25  ❌

∴ 2nd equation (y = [tex]3 (\frac{1}{3} )^{x}[/tex] ) is the one being represented by the graph.