Respuesta :

Answer:

  • [tex] \boxed{ f\cdot{g}(x) = x {}^{3} - x {}^{2}}[/tex]

Step by step explanation:

Given that,

[tex]f(x) = {x}^{2} [/tex]

[tex]g(x) = x - 1[/tex]

Solution:

Solving for (f•g)(x):

[tex] = f(x) \cdot g(x)[/tex]

Now substitute the given values.

[tex] = x {}^{2} \cdot(x - 1)[/tex]

[tex] = x {}^{2} (x - 1)[/tex]

Apply distributive property:

[tex] = (x ^{2} \cdot x) - x {}^{2} \cdot 1[/tex]

  • [tex] \boxed{ f\cdot{g}(x) = x {}^{3} - x {}^{2}}[/tex]

Hence,f•g(x) will be [tex] x {}^{3} - x {}^{2}[/tex].