If a = 2√3, then the exact value of b is...

Answer:
b = 2
Step-by-step explanation:
using the tangent ratio in the right triangle and the exact value
tan30° = [tex]\frac{1}{\sqrt{3} }[/tex] , then
tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{b}{a}[/tex] = [tex]\frac{b}{2\sqrt{3} }[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross- multiply )
b × [tex]\sqrt{3}[/tex] = 2[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )
b = 2
Answer:
Given that a = 2√3.
Let's find value of b...