Respuesta :

From the given information, we have

[tex]13\sin(\theta) = 12\cos(\theta) \implies \dfrac{\sin(\theta)}{\cos(\theta)} = \dfrac{12}{13}[/tex]

In the expression of interest, divide through everything by [tex]\cos^2(\theta)[/tex] to get

[tex]\dfrac{2\sin(\theta)\cos(\theta)}{\cos^2(\theta) - \sin^2(\theta)} = \dfrac{2\frac{\sin(\theta)}{\cos(\theta)}}{1 - \frac{\sin^2(\theta)}{\cos^2(\theta)}}[/tex]

Then plugging in the given info, we get

[tex]\dfrac{2\sin(\theta)\cos(\theta)}{\cos^2(\theta) - \sin^2(\theta)} = \dfrac{2\times \frac{12}{13}}{1 - \left(\frac{12}{13}\right)^2} = \boxed{\dfrac{312}{25}}[/tex]