if 13 sin θ=12 cos θ, find the value

From the given information, we have
[tex]13\sin(\theta) = 12\cos(\theta) \implies \dfrac{\sin(\theta)}{\cos(\theta)} = \dfrac{12}{13}[/tex]
In the expression of interest, divide through everything by [tex]\cos^2(\theta)[/tex] to get
[tex]\dfrac{2\sin(\theta)\cos(\theta)}{\cos^2(\theta) - \sin^2(\theta)} = \dfrac{2\frac{\sin(\theta)}{\cos(\theta)}}{1 - \frac{\sin^2(\theta)}{\cos^2(\theta)}}[/tex]
Then plugging in the given info, we get
[tex]\dfrac{2\sin(\theta)\cos(\theta)}{\cos^2(\theta) - \sin^2(\theta)} = \dfrac{2\times \frac{12}{13}}{1 - \left(\frac{12}{13}\right)^2} = \boxed{\dfrac{312}{25}}[/tex]