Respuesta :
Standard form of quadratic equation: ax² + bx + c
Here given equation: f(x) = -(x - 4)² + 2
Simplify the equation:
⇒ f(x) = -(x - 4)² + 2
Use perfect square formula: (a + b)² = a² + 2ab + b²
⇒ f(x) = -(x² + 2(x)(-4) + (-4)²) + 2
⇒ f(x) = -(x² - 8x + 16) + 2
⇒ f(x) = -x² + 8x - 16 + 2
⇒ f(x) = -x² + 8x - 14
[tex]\hrulefill[/tex]
Here given equation: f(x) = (x - 4)² + 2
Simplify the equation:
⇒ f(x) = (x - 4)² + 2
⇒ f(x) = x² + 2(x)(-4) + (-4)² + 2
⇒ f(x) = x² - 8x + 16 + 2
⇒ f(x) = x² - 8x + 18
Answer:
f(x)=x²-8x+18
Step-by-step explanation:
f(x) = (x-4)² + 2
To find the answer for the first part (x-4)², you need to use the formula.
This is the formula: (a-b)²=a²-2ab+b²
Plug in x for a and -4 for b.
(x-4)²=x²-8x+16
Now, put x²-8x+16 for (x-4)².
f(x)=x²-8x+16+2
Add like terms.
f(x)=x²-8x+18
Our answer is already in standard form because it is from greatest to least.
Hope this helps!
If not, I am sorry.