Respuesta :
Answer:
Approximately [tex]9.39 \; {\rm m\cdot s^{-1}}[/tex] after the sphere has travelled a distance of [tex]5\; {\rm m}[/tex].
Approximately [tex]16.3\; {\rm m\cdot s^{-1}}[/tex] right before touching the ground (a distance of [tex]15\; {\rm m}[/tex].)
Assumption: [tex]g = 9.81\; {\rm N\cdot kg^{-1}}[/tex].
Explanation:
Weight of the sphere: [tex]m\, g = 9.81\; {\rm N \cdot kg^{-1}} \times 10\; {\rm kg} = 98.1\; {\rm N}[/tex], downwards.
Drag on the sphere: [tex]10.0\; {\rm N}[/tex] upwards.
Net force on the sphere: [tex]98.1\; {\rm N} - 10\; {\rm N} = 88.1\; {\rm N}[/tex] downwards.
Acceleration of the sphere: [tex]a = F_\text{net} / m = 88.1\; {\rm N} / (10\; {\rm kg}) = 8.81\; {\rm m\cdot s^{-2}}[/tex].
Apply the SUVAT equation [tex]v^{2} - u^{2} = 2\, a\, x[/tex], where [tex]v[/tex] is the final velocity, [tex]u[/tex] is the initial velocity ([tex]0[/tex] in this case, as the sphere was released from rest,) and [tex]x[/tex] is the distance (displacement) that the sphere has travelled so far.
Rearrange this equation to obtain an expression for [tex]v[/tex]:
[tex]\displaystyle v = \sqrt{2\, a\, x + u^{2}}[/tex].
For example, after the ball travelled a distance of [tex]5.00\; {\rm m}[/tex], [tex]x = 5.00 \; {\rm m}[/tex]:
[tex]\begin{aligned} v &= \sqrt{2\, a\, x + u^{2}} \\ &= \sqrt{2 \times 8.81\; {\rm m\cdot s^{-2}} \times 5.0\; {\rm m} + 0} \\ &\approx 9.39\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Similarly, [tex]x = 15.0\; {\rm m}[/tex] right before landing, such that:
[tex]\begin{aligned} v &= \sqrt{2\, a\, x + u^{2}} \\ &= \sqrt{2 \times 8.81\; {\rm m\cdot s^{-2}} \times 15.0\; {\rm m} + 0} \\ &\approx 16.3\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].