Answer:
[tex]m \times H=\left[\begin{array}{c c c}\boxed{-9} & \boxed{36} & \boxed{-\dfrac{9}{2}}\end{array}\right][/tex]
Step-by-step explanation:
Calculate the value of m
Given:
[tex]3\left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]=\dfrac{2}{3}m \times \left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right][/tex]
Therefore:
[tex]\implies 3=\dfrac{2}{3}m[/tex]
[tex]\implies m=3 \times \dfrac{3}{2}[/tex]
[tex]\implies m=\dfrac{9}{2}[/tex]
Calculate the value of H
Given:
[tex]\left(H+ \left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]\right)+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]=\left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]+\left(\left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]\right)[/tex]
Therefore:
[tex]\implies H= \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right][/tex]
Calculating m × H
[tex]\implies m \times H=\dfrac{9}{2} \times \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right][/tex]
[tex]\implies m \times H=\left[\begin{array}{c c c}\dfrac{9}{2}(-2) & \dfrac{9}{2}(8) & \dfrac{9}{2}(-1)\end{array}\right][/tex]
[tex]\implies m \times H=\left[\begin{array}{c c c}-9 & 36 & -\dfrac{9}{2}\end{array}\right][/tex]