Planet-X has a mass of 4.74×1024 kg and a radius of 5870 km.
1. What is the First Cosmic Speed i.e. the speed of a satellite on a low lying circular orbit around this planet? (Planet-X doesn't have any atmosphere.)
2. What is the Second Cosmic Speed i.e. the minimum speed required for a satellite in order to break free permanently from the planet?
3. If the period of rotation of the planet is 16.6 hours, then what is the radius of the synchronous orbit of a satellite?

Respuesta :

Solutions for the three problems are is mathematically given as

  • v=7338.9349
  • [tex]V=14677.86986 \mathrm{~m} / \mathrm{s}[/tex]
  • [tex]&r=30581248.06 \times 10^{4} \mathrm{~m} / \mathrm{s}[/tex]

What is the First Cosmic Speed i.e. the speed of a satellite on a low-lying circular orbit around this planet?

(a) First cosmic speed (arbitral velocily)

[tex]v=\sqrt{\frac{G M}{r}}\\v=\sqrt{\frac{6.67 \times 10^{-11} \times 4.74 \times 10^{24}}{5870 \times 10^{3}}}[/tex]

v=7338.9349

(b) Second cosmic speed (escape velo.)

$

\begin{gathered}

[tex]V=\sqrt{\frac{2 G M}{r}}\\\\V=\sqrt{2} \sqrt{\frac{G M}{r}}\\\\=V\sqrt{2} \times 7338.9349 \\[/tex]

[tex]V=14677.86986 \mathrm{~m} / \mathrm{s}[/tex]

(c) In conclusion, in a circular orbit, the gravitational force is gets balanced by centripetal force

[tex]&m_{q \omega \omega^{2}}=\frac{G M M}{r^{2}} \\&r^{3}=\frac{G M}{\omega^{2}}=\frac{G M}{4 \pi^{2}} T^{2} \\&r^{3}=\frac{6.67 \times 10^{-11} \times 4.74 \times 10^{24} \times(16.6 \times 3600)^{7}}{4 \pi^{2}} \\[/tex]

[tex]&r=30581248.06 \times 10^{4} \mathrm{~m} / \mathrm{s}[/tex]

Read more about gravitational force

https://brainly.com/question/12528243

#SPJ1