Respuesta :

Answer:

The wheel will go through 1146 revolutions in 5 minutes.

Explanation:

We can the formula:

[tex]\boxed{\omega = \frac{2 \pi}{T}}[/tex]

where

ω ⇒ angular speed (24 rad/s),

T ⇒ time period (? s),

and solve for T to find the time it takes for the wheel to complete one revolution.

⇒  [tex]24 = \frac{2 \pi}{T}[/tex]

⇒  [tex]T = \bf \frac{2 \pi}{24}[/tex]  s

This means it takes [tex]\bf \frac{2 \pi}{24}[/tex] seconds for the wheel to complete one revolution.

Now, using the unitary method,

In [tex]\frac{2 \pi}{24}[/tex] seconds          ⇒    1 revolution completed

In 1 second              ⇒    1 ÷ [tex]\frac{2 \pi}{24}[/tex]   =  [tex]\frac{24}{2 \pi}[/tex]  revolutions completed

In (5 × 60 = ) 300s  ⇒     [tex]\frac{24}{2 \pi}[/tex]   ×  300   = 1145.9

                                                            ≅ 1146 revolutions completed