101 101 Suppose that Σ ai = -12 and Σ bi = -19. i=1 i=1 Compute the sum. 101 Σ( – 5ai – 12bi) i=1

Distribute the summation over the sum.
[tex]\displaystyle \sum_{i=1}^{101} (-5a_i - 12b_i) = -5 \sum_{i=1}^{101} a_i - 12 \sum_{i=1}^{101} b_i[/tex]
Now plug in the known sums and simplify.
[tex]\displaystyle \sum_{i=1}^{101} (-5a_i - 12b_i) = -5(-12) - 12(-19) = \boxed{288}[/tex]