Respuesta :

Answer: [tex]\sqrt{407}[/tex]

Step-by-step explanation:

In this triangle, we know that [tex]IJ=46, IK=24, JK=36[/tex].

So, using the Law of Cosines in triangle IJK,

[tex]36^2 = 46^2 + 24^2 - 2(46)(24) \cos (\angle JIK)\\\\-1396=-2(46)(24) \cos(\angle JIK)\\\\\cos (\angle JIK)=\frac{349}{552}[/tex]

Using the Law of Cosines in the triangle LIK,

[tex](KL)^2 = 23^2 + 24^2 - 2(23)(24) \cos (\angle JIK)\\\\(KL)^2 = 23^2 + 24^2 - 2(23)(24)\left(\frac{349}{552} \right)\\\\(KL)^2 = 407\\\\KL=\sqrt{407}[/tex]