The maximum value of the function 7 - 2x - 3x² exists 22/3.
Given: 7 - 2x - 3x²
We must begin by estimating the first derivative:
Differentiating the equation above, we have:
dy/dx = 0 - 2 - 6x = - 2 - 6x
We know that dy/dx = 0 at maxima and minima
Therefore, we contain, - 2 - 6x = 0
6x = - 2
x = - 1/3
Substituting x = - 3 back into the equation of the curve yields the following result:
y = 7 - 2(-1/3) - 3(-1/3)² = 22/3
y = 22/3
Therefore, 22/3 exists the maximum value of y.
To learn more about the maximum value of the function refer to:
https://brainly.com/question/19583429
#SPJ9