Using the asymptote concept, we have that:
In this problem, the function is:
[tex]f(x) = \frac{3x}{x - 9}[/tex]
For the vertical asymptote, we have that:
x - 9 = 0 -> x = 9.
For the horizontal asymptote:
[tex]y = \lim_{x \rightarrow \infty} f(x) = \lim_{x \rightarrow \infty} \frac{3x}{x - 9} = \lim_{x \rightarrow \infty} \frac{3x}{x} = \lim_{x \rightarrow \infty} 3 = 3[/tex]
Hence, the end behavior is that as [tex]x \rightarrow \infty, y \rightarrow 3[/tex].
More can be learned about asymptotes at https://brainly.com/question/16948935
#SPJ1