Which function in vertex form is equivalent to f(x) = x² + x +1?
○ f(x) = (x + 1/ 1³² + 1 ²1/0
3
4
○ f(x) = (x + 1)² + 2/1/2
○ f(x) = (x + ²/2 1²³ + ²/
4
5
f(x) = (x + 1/2-1² + ²/1/2
4

Respuesta :

Answer:

[tex]\left( x+\frac{1}{2} \right)^{2} + \frac{3}{4}[/tex]

Step-by-step explanation:

NOTE :

[tex]x^2+ax=\left( x+\frac{a}{2} \right)^{2} -\left( \frac{a}{2} \right)^{2}[/tex]

………………………………………

f(x) = x² + x +1

     [tex]=x^{2}+2\times \frac{x}{2} +1[/tex]

     [tex]=\left( x+\frac{1}{2} \right)^{2} -\left( \frac{1}{2} \right)^{2} +1[/tex]

     [tex]=\left( x+\frac{1}{2} \right)^{2} - \frac{1}{4}+1[/tex]

     [tex]=\left( x+\frac{1}{2} \right)^{2} + \frac{3}{4}[/tex]