Respuesta :

Answer:  [tex]y=\frac{13}{2} x+3[/tex]

Step-by-step explanation:

Remember the point-slope equation which is [tex]y-y_{1} = m(x-x_{1} )[/tex]  where[tex](x_{1} , y_{1} )[/tex] is your point and [tex]m[/tex] is your slope.

Given that we substitute what you have:

[tex]y-(-10) =\frac{13}{2} (x - (-2))[/tex]

Minus and minus give us positive:

[tex]y+10 =\frac{13}{2} (x +2)[/tex]

Multiply slope into the parenthesis:

[tex]y+10= \frac{13}{2}x + \frac{13}{2}*2\\[/tex]

Calculate it:

[tex]y+10= \frac{13}{2}x +13[/tex]

Isolate the [tex]y[/tex] by subtracting 10 from both sides:

[tex]y=\frac{13}{2} x + 13 -10[/tex]

Your final equation is:

[tex]y=\frac{13}{2} x +3[/tex]

Hope this makes sense!

And here's the graph to prove that the line actually goes through the point [tex](-2,-10)[/tex]:

Ver imagen anastasiazakala