Respuesta :

The solution of the differential equation dy/dx=[tex]2xy/(x^{2} -1)[/tex] is y=[tex]-x^{2} +1[/tex].

Given a differential equation dy/dx=[tex]2xy/(x^{2} -1)[/tex].

We are required to find the solution of the differential equation when y(0)=1.

dy/dx=[tex]2xy/(x^{2} -1)[/tex]

Taking y to left side and dx to right side.

1/y dy=2x/[tex](x^{2} -1)[/tex] dx

Integrating both sides.

[tex]\int\limits {1/y} \, dy[/tex]=[tex]\int\limits {2x/(x^{2} -1)} \, dx[/tex]----------1

log y=[tex]\int\limits {2x/(x^{2} -1)} \, dx[/tex]

Solving right side.

[tex]\int\limits {2x/(x^{2} -1)} \, dx[/tex]

let [tex]x^{2} -1[/tex]=z

differentiating both sides with respect to x.

2x=dz/dx

2x dx=dz

Put 2x dx=dz in 1.

[tex]\int\limits {1/y} \, dy[/tex]=[tex]\int\limits {1/z } \, dz[/tex]

log y=log z+log c

Put z=[tex]x^{2} -1[/tex]

log y=log([tex]x^{2} -1[/tex])+log c

log y=log [{[tex]x^{2} -1[/tex])c]

y=([tex]x^{2} -1[/tex])c------------2

Put x=0 and y=1

1=(0-1)c

1=-c

c=-1

Put c=-1 in 2 to get the solution.

y=-1([tex]x^{2} -1[/tex])

y=[tex]-x^{2} +1[/tex]

Hence the solution of the differential equation dy/dx=[tex]2xy/(x^{2} -1)[/tex] is

y=[tex]-x^{2} +1[/tex].

Learn more about differential equation at https://brainly.com/question/25731911

#SPJ1