The solution of the differential equation dy/dx=[tex]2xy/(x^{2} -1)[/tex] is y=[tex]-x^{2} +1[/tex].
Given a differential equation dy/dx=[tex]2xy/(x^{2} -1)[/tex].
We are required to find the solution of the differential equation when y(0)=1.
dy/dx=[tex]2xy/(x^{2} -1)[/tex]
Taking y to left side and dx to right side.
1/y dy=2x/[tex](x^{2} -1)[/tex] dx
Integrating both sides.
[tex]\int\limits {1/y} \, dy[/tex]=[tex]\int\limits {2x/(x^{2} -1)} \, dx[/tex]----------1
log y=[tex]\int\limits {2x/(x^{2} -1)} \, dx[/tex]
Solving right side.
[tex]\int\limits {2x/(x^{2} -1)} \, dx[/tex]
let [tex]x^{2} -1[/tex]=z
differentiating both sides with respect to x.
2x=dz/dx
2x dx=dz
Put 2x dx=dz in 1.
[tex]\int\limits {1/y} \, dy[/tex]=[tex]\int\limits {1/z } \, dz[/tex]
log y=log z+log c
Put z=[tex]x^{2} -1[/tex]
log y=log([tex]x^{2} -1[/tex])+log c
log y=log [{[tex]x^{2} -1[/tex])c]
y=([tex]x^{2} -1[/tex])c------------2
Put x=0 and y=1
1=(0-1)c
1=-c
c=-1
Put c=-1 in 2 to get the solution.
y=-1([tex]x^{2} -1[/tex])
y=[tex]-x^{2} +1[/tex]
Hence the solution of the differential equation dy/dx=[tex]2xy/(x^{2} -1)[/tex] is
y=[tex]-x^{2} +1[/tex].
Learn more about differential equation at https://brainly.com/question/25731911
#SPJ1