Respuesta :

Answer:

[tex]x=\dfrac{3+ \sqrt{29}}{2}, \quad \dfrac{3- \sqrt{29}}{2}[/tex]

Step-by-step explanation:

Quadratic Formula

[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]

Given quadratic equation:

[tex]x^2-3x-5=0[/tex]

Define the variables:

[tex]\implies a=1, \quad b=-3, \quad c=-5[/tex]

Substitute the defined variables into the quadratic formula and solve for x:

[tex]\implies x=\dfrac{-(-3) \pm \sqrt{(-3)^2-4(1)(-5)}}{2(1)}[/tex]

[tex]\implies x=\dfrac{3 \pm \sqrt{9+20}}{2}[/tex]

[tex]\implies x=\dfrac{3 \pm \sqrt{29}}{2}[/tex]

Therefore, the exact solutions to the given quadratic equation are:

[tex]x=\dfrac{3+ \sqrt{29}}{2}, \quad \dfrac{3- \sqrt{29}}{2}[/tex]

Learn more about the quadratic formula here:

https://brainly.com/question/27868610

https://brainly.com/question/27750885

Answer:

[tex]\boxed {\frac{3+\sqrt{29}}{2}} \boxed{\frac{3-\sqrt{29}}{2}}[/tex]

Step-by-step explanation:

Quadratic Formula :

[tex]\boxed {\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}}[/tex]

We are given the equation x² - 3x - 5 = 0.

Here,

  • a = 1
  • b = -3
  • c = -5

Solving :

  • 3 ± √3² - 4(1)(-5) / 2(1)
  • 3 ± √29 / 2

Hence, the solutions are :

[tex]\boxed {\frac{3+\sqrt{29}}{2}} \boxed{\frac{3-\sqrt{29}}{2}}[/tex]

Otras preguntas