Respuesta :

I think you mean in terms of [tex]\sin(x)[/tex]?

Recall Euler's identity

[tex]e^{ix} = \cos(x) + i \sin(x)[/tex]

and de Moivre's theorem

[tex]\left(e^{ix}\right)^n = \left(\cos(x) + i \sin(x)\right)^n = \cos(nx) + i \sin(nx) = e^{inx}[/tex]

where [tex]i=\sqrt{-1}[/tex].

It follows that

[tex]\sin(4x) = \mathrm{Im}\left(\cos(x) + i \sin(x)\right)^4[/tex]

By the binomial theorem, expanding the right side gives

[tex]\cos^4(x) + 4i \cos^3(x) \sin(x) - 6\cos^2(x) \sin^2(x) - 4i \cos(x) \sin^3(x) + \sin^4(x)[/tex]

and so

[tex]\sin(4x) = 4\cos^3(x) \sin(x) - 4 \cos(x) \sin^3(x)[/tex]

We can factorize this as

[tex]\sin(4x) = 4 \cos(x) \sin(x) \left(\cos^2(x) - \sin^2(x)\right)[/tex]

and using the Pythagorean identity

[tex]\cos^2(x)+\sin^2(x) = 1 \implies \cos(x) = \pm \sqrt{1-\sin^2(x)}[/tex]

this reduces to

[tex]\sin(4x) = \pm 4 \sqrt{1-\sin^2(x)} \sin(x) (1 - 2 \sin^2(x))[/tex]