3. Consider the equation 2x² + 4y² + 8x - 16y + F = 0. Find all values of F such that the graph of the equation is a) an ellipse b) a point - ellipse​

Respuesta :

The equation 2•x² + 4•y² + 8•x - 16•y + F = 0, at a value of F is the graph of an ellipse when we have;

a. A value of F that results in the equation of an ellipse is; F = 23

b. A point on the ellipse is ((-2), 2.5)

Which method can be used to find the value of F that gives the graph of an ellipse?

The equation of an ellipse can be presented as follows;

[tex] \frac{(x - h) ^{2} }{ {a}^{2} } + \frac{(y - k) ^{2} }{ {b}^{2} } = 1[/tex]

The given equation can be presented as follows;

2•x² + 4•y² + 8•x - 16•y + F = 0

Collecting like terms, gives;

2•(x² + 4•x) + 4•y² - 16•y + F = 0

Adding a constant value to both sides, we get;

2•(x² + 4•x + 4) + 4•y² - 16•y + 16 + F = 24

2•(x + 2)•(x + 2) + (2•y - 4)•(2•y - 4) + F = 24

2•(x + 2)² + 4•(y - 2)² + F = 24

2•(x + 2)² + 4•(y - 2)² + F - 23 = 24 - 23 = 1

When F = 23, we have;

2•(x + 2)² + 4•(y - 2)² + 23 - 23 = 1

  • 2•(x + 2)² + 4•(y - 2)² = 1

Which gives;

[tex] \mathbf{\frac{(x + 2) ^{2} }{ \left( {\frac{1}{ \sqrt{2} }} \right)^{2}} + \frac{(y - 2) ^{2} }{ \left( {\frac{1}{ 2} } \right)^{2}} } = 1[/tex]

Where;

  • a = 1/(√2)
  • b = 1/2

b) A point on the ellipse can be found as follows;

  • 2•(x + 2)² + 4•(y - 2)² = 1

When x = -2

2•((-2) + 2)² + 4•(y - 2)² = 1

0 + 4•(y - 2)² = 1

y - 2 = √(1/4) = 1/2

  • y = 2 + 1/2 = 2.5

A point on the ellipse is therefore;

  • ((-2) , 2.5)

When y = 2

2•(x + 2)² + 4•(2 - 2)² = 1

2•(x + 2)² + 0 = 1

2•(x + 2)² = 1

(x + 2)² = 1/2

x + 2 = √(1/2)

x = √(1/2) - 2

Another point on the ellipse is therefore;

((√(1/2) - 2), 0)

Learn more about the equation of an ellipse here:

https://brainly.com/question/16904744

#SPJ1