Respuesta :

Answer:

5) y = 1x + 2

6) y = -0.5x + 6

Explanation:

5)

Given points are (-3, -1), (2, 4)

[tex]\sf slope \:formula: \dfrac{y_2 - y_1}{x_2- x_1} = \dfrac{\triangle y}{\triangle x} \ \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points[/tex]

Here, find slope:

[tex]\rightarrow \sf slope \ (a) = \dfrac{4-(-1)}{2-(-3)} = \dfrac{5}{5} = 1[/tex]

Find Equation:

y = ax + q

Here found that a = 1, take (x, y) = (-3, -1)

[tex]\sf -1 = 1(-3) + q[/tex]

[tex]\sf q - 3 = -1[/tex]

[tex]\sf q = -1 + 3[/tex]

[tex]\sf q = 2[/tex]

So, in total equation:

y = 1x + 2

-------------------------------------------------------------------------------------

6)

Given points are (-2, 7), (2, 5)

[tex]\sf slope \:formula: \dfrac{y_2 - y_1}{x_2- x_1} = \dfrac{\triangle y}{\triangle x} \ \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points[/tex]

Here, find slope:

[tex]\rightarrow \sf slope \ (a) = \dfrac{5-7}{2-(-2)} = -0.5[/tex]

Find Equation:

y = ax + q

Here found that a = -0.5, (x, y) = (-2, 7)

[tex]\sf 7 = -0.5(-2) + q[/tex]

[tex]\sf 7 = 1 + q[/tex]

[tex]\sf q = 7-1[/tex]

[tex]\sf q = 6[/tex]

So, in total equation:

y = -0.5x + 6

Answer:

  • Since √3√3 is equal to 1 , you simply rearranged the way it was written. The value of the simplified fraction stays the same