Respuesta :
Answer:
Step-by-step explanation:
The sum of an alternating geometric series SUM((-1)^n*ar^n) = a/(1+r). The given series has r=2/3 and a=1. The sum will be 1/(1+2/3)= 3/5
Hello,
We have s0 = 1 and q = -2/3
[tex]S _{n} = S _{0} \times q {}^{n} = 1 \times ( - \frac{2}{3} ) {}^{n} [/tex]
[tex]S _{8} = ( - \frac{2}{3} ) {}^{8} = \frac{2 {}^{8} }{3 {}^{8} } = \frac{256}{6 561} [/tex]