Respuesta :

8. The length of the support is 7. 9 m

9. The length of the conveyer is 12m

3. a = 59m

A = 44°

B = 52°

4. c = 88. 6 mm

b = 49. 1 m

B = 34°

How to solve the trigonometry

8. We have the angle to be 20 degrees

Opposite side = x

hypotenuse = 23m

Using the sine ratio

sin θ = opposite/ hypotenuse

[tex]sin 20 = \frac{x}{23}[/tex]

Cross multiply

[tex]sin 20[/tex] × [tex]23 = x[/tex]

[tex]x = 0. 3420[/tex] × [tex]23[/tex]

x = 7. 9 m

The length of the support is 7. 9 m

9. The angle of elevation is 37. 3 degrees

Hypotenuse = 19 . 0m

Opposite = x

Using the sine ratio

sin θ = opposite/ hypotenuse

[tex]sin 37. 3 = \frac{x}{19}[/tex]

cross multiply

[tex]x = 0. 6059[/tex] × [tex]19[/tex]

x = 11.5

x = 12 m in 2 significant figures

The length of the conveyer is 12m

3. To determine the sides and angles, we use the sine rule;

[tex]\frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{sin C}[/tex]

For side a, we use the Pythagorean theorem

[tex]c^2 = a^2 + b^2[/tex]

[tex]85^2 = a^2 + 67^2[/tex]

[tex]a = \sqrt{89^2-67^2}[/tex]

[tex]a = \sqrt{3432}[/tex]

a = 58. 58, a = 59m

To find angle A and B, use the sine rule

[tex]\frac{59}{sin A } = \frac{85}{sin 90}[/tex]

cross multiply

[tex]sin A[/tex] × [tex]85[/tex] = [tex]sin 90[/tex] × [tex]59[/tex]

make sin A subject of formula

[tex]sin A = \frac{59}{85}[/tex]

[tex]sin A = 0. 6941[/tex]

A = [tex]sin^-^1(0. 6941)[/tex]

A = 44°

[tex]\frac{67}{sin B} = \frac{85}{sin 90}[/tex]

cross multiply

[tex]sin B[/tex] × [tex]85[/tex] = [tex]sin 90[/tex] × [tex]67[/tex]

make sin b subject of formula

[tex]sin B = \frac{67}{85}[/tex]

[tex]sin B = 0. 7882[/tex]

B = [tex]sin^-^1( 0. 7882)[/tex]

B = 52°

4. To find the sides, we use the sine rule;

[tex]\frac{74. 0}{sin 56. 6} = \frac{c}{sin 90}[/tex]

Cross multiply

[tex]sin 56. 6[/tex] × [tex]c = sin 90[/tex] × [tex]74[/tex]

make 'c' subject of formula

[tex]c = \frac{74}{0. 8348}[/tex]

c = 88. 6 mm

To find length b, we use the Pythagorean theorem

[tex]c^2 = a^2 + b^2[/tex]

[tex]b^2 = c^2 - a^2[/tex]

[tex]b^2 = 88. 8^2 - 74^2[/tex]

[tex]b = \sqrt{7885. 44 - 5476}\\\\ b = \sqrt{2409. 44}[/tex]

b = 49. 1 m

[tex]\frac{74. 0}{sin 56. 6} = \frac{49. 1}{sin B}[/tex]

cross multiply

[tex]sin B = \frac{40. 99}{74. 0}[/tex]

B = [tex]sin^-^1(0. 5539)[/tex]

B = 34°

Learn more about trigonometric identity here:

https://brainly.com/question/7331447

#SPJ1