Respuesta :
Answer:
- 6(6 - 2x)²
Step-by-step explanation:
using the chain rule
[tex]\frac{dy}{dx}[/tex] = [tex]\frac{dy}{du}[/tex] × [tex]\frac{du}{dx}[/tex]
let y = (6 - 2x)³
let u = 6 - 2x , then y = u³
[tex]\frac{du}{dx}[/tex] = - 2 and [tex]\frac{dy}{du}[/tex] = 3u²
then
[tex]\frac{dy}{dx}[/tex] = 3u² × - 2 = - 6(6 - 2x)²