Help me pleaseeeeeeeeeeeeeeeeeeeee

Answer:
=========================
The law of sines is:
Find the value of ∠C using the angle sum theorem:
Find side a:
Note, the sides of a triangle are marked as:
Use two pairs with one unknown:
Substitute values and solve for a:
Find side b, similar to finding side a:
Answer:
a = 16.5 cm (nearest tenth)
b = 23.8 cm (nearest tenth)
Step-by-step explanation:
Definition
A, B and C are the angles and a, b and c are the sides opposite the angles.
From inspection of the triangle:
Interior angles of a triangle sum to 180°:
⇒ A + B + C = 180°
⇒ 42° + 75° + C = 180°
⇒ C = 180° - 117°
⇒ C = 63°
To find the missing side lengths a and b, use the Sine Rule:
[tex]\sf \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]
Substitute the given values into the Sine Rule formula:
[tex]\implies \sf \dfrac{a}{\sin 42^{\circ}}=\dfrac{b}{\sin 75^{\circ}}=\dfrac{22}{\sin 63^{\circ}}[/tex]
Finding side a:
[tex]\implies \sf \dfrac{a}{\sin 42^{\circ}}=\dfrac{22}{\sin 63^{\circ}}[/tex]
[tex]\implies \sf a=\dfrac{22\sin 42^{\circ}}{\sin 63^{\circ}}[/tex]
[tex]\implies \sf a=16.52162239...[/tex]
Therefore, side a is 16.5 cm (nearest tenth).
Finding side b:
[tex]\implies \sf \dfrac{b}{\sin 75^{\circ}}=\dfrac{22}{\sin 63^{\circ}}[/tex]
[tex]\implies \sf b=\dfrac{22\sin 75^{\circ}}{\sin 63^{\circ}}[/tex]
[tex]\implies \sf b=23.84984577...[/tex]
Therefore, side b is 23.8 cm (nearest tenth).
Learn more about the Sine Rule here:
https://brainly.com/question/28033514
https://brainly.com/question/27704834