contestada

Find the area of a triangle who's side lengths are 13, 14, and 15. (The questions doesn't tell the type of triangle.)

Respuesta :

Answer:

84 square units.

Step-by-step explanation:

Area of scalene triangle:

  [tex]\sf \boxed{\bf Area = \sqrt{s*(s-a)(s-b)*(s-c)}}[/tex]

Here, a, b and c are the sides of the triangle. s is the semi perimeter.

a = 13

b = 14

c = 15

[tex]\sf s= \dfrac{a+b+c}{2}\\\\ =\dfrac{13+14+15}{2}\\\\=\dfrac{42}{2}\\\\s = 21[/tex]

s -a = 21 - 13 = 8

s -b = 21 - 14 = 7

s - c = 21 - 15 = 6

   [tex]\sf Area = \sqrt{21*8*7*6}[/tex]

            [tex]= \sqrt{ 7* 3 * 2 * 2 * 2 * 7 * 2 * 3}\\\\=7 * 3 *2*2\\\\= 84 \ square \ units[/tex]