keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the line above
[tex](\stackrel{x_1}{4}~,~\stackrel{y_1}{-2})\qquad (\stackrel{x_2}{-1}~,~\stackrel{y_2}{3}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{3}-\stackrel{y1}{(-2)}}}{\underset{run} {\underset{x_2}{-1}-\underset{x_1}{4}}} \implies \cfrac{3 +2}{-1 -4}\implies \cfrac{5}{-5}\implies \cfrac{1}{-1}\implies -1 \\\\[-0.35em] ~\dotfill[/tex]
[tex]\stackrel{~\hspace{5em}\textit{perpendicular lines have \underline{negative reciprocal} slopes}~\hspace{5em}} {\stackrel{slope}{\cfrac{1}{-1}} ~\hfill \stackrel{reciprocal}{\cfrac{-1}{1}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{-1}{1}\implies 1}}[/tex]