keeping in mind that parallel lines have exactly the same slope, let's check for the slope of the equation above
[tex]y = \stackrel{\stackrel{m}{\downarrow }}{\cfrac{1}{2}}x+6\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]
so we're really looking for the equation of a line whose slope is 1/2 and passes through (-4 , 1)
[tex](\stackrel{x_1}{-4}~,~\stackrel{y_1}{1})\hspace{10em} \stackrel{slope}{m} ~=~ \cfrac{1}{2} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{1}=\stackrel{m}{ \cfrac{1}{2}}(x-\stackrel{x_1}{(-4)}) \\\\\\ y-1=\cfrac{1}{2}(x+4)\implies y-1=\cfrac{1}{2}x+2\implies y=\cfrac{1}{2}x+3[/tex]