A site in Pennsylvania receives a total annual deposition of 2.688 g/mof sulfate from fertilizer and acid rain. The ratio by mass of ammonium sulfate/ammonium bisulfate/sulfuric acid is 3.0/5.5/1.0. (c) If 10. km² is the area of an unpolluted lake 3 m deep and there is no loss of acid, what pH will the lake water attain by the end of the year? (Assume constant volume.)

Respuesta :

According to the given statement pH would be attained in the year =  5.192

What is pH scale?

A scale used to specify the acidity or basicity of an aqueous solution, originally denoting "potential of hydrogen." The pH of acidic solutions is lower than the pH of basic or alkaline solutions.

According to the given information:

The formula of the dissociation of H2SO4

                   [tex]\begin{gathered}\mathrm{H}_2 \mathrm{SO}_4 \rightarrow \mathrm{HSO}^{-}+\mathrm{H}_3 \mathrm{O}^{+} \\\mathrm{HSO}_4^{-}+\mathrm{H}_2 \mathrm{O} \rightleftharpoons \mathrm{SO}_4^{2-}+\mathrm{H}_3 \mathrm{O}^{+}\end{gathered}\\[/tex]

As we can see ,

2 moles of [tex]\mathrm{H}_3 \mathrm{O}^{+}[/tex] in total were produced from 1 mole [tex]\mathrm{H}_2 \mathrm{SO}_4[/tex]

solve for the concentration of [tex]\mathrm{H}_3 \mathrm{O}^{+}[/tex] in the lake.

Now solve for the number of moles.

Mole of  [tex]\mathrm{H}_3 \mathrm{O}^{+}=9460 \mathrm{~kg} \mathrm{H} \mathrm{H}_2 \mathrm{SO}_4 \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{H}_2 \mathrm{SO}_4}{98.1 \mathrm{~g} \mathrm{H}_2 \mathrm{SO}_4} \times \frac{2 \mathrm{~mol} \mathrm{H}_3 \mathrm{O}^{+}}{1 \mathrm{~mol} \mathrm{H_{2 } \mathrm { SO } _ { 4 }}}[/tex]

Mole of [tex]\mathrm{H}_3 \mathrm{O}^{+}=192864.4241 \text { moles } \mathrm{H}_3 \mathrm{O}^{+}[/tex]

The solve for the volume of the lake:

V = lhw = Ah

   = 10 km² x ((1000 m)²/(1 km)²)x3mx(1000 L/1 m³)

V = 3.0 x 10^10

Now solving for [tex]\left[\mathrm{H}_3 \mathrm{O}^{+}\right][/tex]

[tex]\left[\mathrm{H}_3 \mathrm{O}^{+}\right]=\frac{\mathrm{mol}}{L}=\frac{192864.4241 \mathrm{~mol} \mathrm{H}_3 \mathrm{O}^{+}}{3.0 \times 10^{10} \mathrm{~L}}[/tex]

=  6.4288^-6 M

Solving for the pH

[tex]p H=-\log \left[H_3 O^{+}\right][/tex]

pH = -log(6.4288^-6)

pH = 5.192

pH would be attained in the year = 5.192

To know more about pH scale visit:

https://brainly.com/question/10825137

#SPJ4