Respuesta :

the average power output of the sun is 3.8 × [tex]10^{26}[/tex] W given that about 1350 w/m2 reaches the upper atmosphere of the earth.

As we know intensity falling over a surface is equal to Energy falling per unit area per unit volume.

I = [tex]\frac{Energy}{area*time}[/tex]

Since Power is equal to energy/time

I = power/area

or

Power = Intensity × area

Now, Distance from Sun to Earth , r = 149.6 ×[tex]10^{9}[/tex]  m

So, Surface area of the sphere of radius is:

A = 4 π [tex]r^{2}[/tex]

= 4 × 3.14 × (149.6 × [tex]10^{9}[/tex])²

=  2.81 × [tex]10^{23}[/tex]m²

Thus Average Power output of the sun will be:

P = 1350 × 2.81 × [tex]10^{23}[/tex]

= 3.7935 × [tex]10^{26}[/tex]

P = 3.8 ×    [tex]10^{26}[/tex]  W

So the average power output of the sun is 3.8 × [tex]10^{26}[/tex] W.

If you need to learn more about about the average power of a resistor, click here.

https://brainly.com/question/12972958

#SPJ4

Neetoo

Answer:

Average power output of sun will be 3.8x10^26 W

Explanation:

As

Power= energy/time                             eq(1)                                                                      

And,      Intensity= energy/area x time      eq(2)                                                              

                                                 From eq(1) & eq(2), we get

Intensity= Power/Area

So Power =intensity x area

And area is 4 π r^2                i.e= surface area of sphere  and radius of earth=r = 149.6 × 10^9 m

 A= 4x3.14x(149.6x10^9)2

A= 2.81x10^23  m2  

And Power will be

P=1350x2.81x10^23

So we will get

P=3.8x10^26 W

if u want to learn more about this

https://www.numerade.com/questions/a-calculate-the-power-per-square-meter-reaching-earths-upper-atmosphere-from-the-sun-take-the-power-/

#SPJ4