Respuesta :

By algebraic handling, the simplified radical form of [tex]\sqrt[5]{96 \cdot t^{15}\cdot u^{17}}[/tex] is [tex]2 \cdot \sqrt[5]{3}\cdot t^{3}\cdot u^{17 / 5}[/tex].

How to simplify a radical expression

In this problem we have a radical expression that must be simplified solely by algebraic properties. The complete procedure is shown below:

  1. [tex]\sqrt[5]{96 \cdot t^{15}\cdot u^{17}}[/tex]                    Given
  2. [tex]\sqrt[5]{(2^{5}\cdot 3) \cdot t^{15}\cdot (u^{15}\cdot u^{2})}[/tex]    Associative and commutative properties / Multiplication of powers of equal base / Factor decomposition
  3. [tex]2 \cdot \sqrt[5]{3} \cdot t^{3} \cdot u^{3}\cdot u^{2/5}[/tex]           Product of quintic roots / Definition of quintic root / Power of a power / Quintic root of a product
  4. [tex]2 \cdot \sqrt[5]{3}\cdot t^{3}\cdot u^{17 / 5}[/tex]                Multiplication of powers of equal base
  5. [tex]2 \cdot \sqrt[5]{3\cdot u^{17}} \cdot t^{3}[/tex]                  Product of quintic roots / Definition of quintic root / Power of a power / Quintic root of a product / Result

Therefore, by algebraic handling, the simplified radical form of [tex]\sqrt[5]{96 \cdot t^{15}\cdot u^{17}}[/tex] is [tex]2 \cdot \sqrt[5]{3}\cdot t^{3}\cdot u^{17 / 5}[/tex].

To learn more on radical equations: https://brainly.com/question/8606917

#SPJ1