First of all I am solving the question and then I will explain the hint...
[tex] \sf \: lim_{x\to 0} \: \frac{sin2x}{sin3x}[/tex]
- Evaluate the limits of numerator and denominator separately.
[tex] \sf \: lim_{x\to 0} \:( sin(2x)) \\ \sf \:lim_{x\to 0} \:( sin(3x))[/tex]
[tex] \sf \: 0 \\ \sf \: 0[/tex]
- Since the expression 0/0 is an indeterminate form, try transforming the expression.
[tex] \sf \: lim_{x\to 0} \: (\frac{sin(2x)}{sin(3x)})[/tex]
- Multiply the fraction by 2×3x/2×3x
- Now, Here we will make the use of hint.. When we evaluated the limit we got 0/0 so now we will multiply the fraction by 2×3x because we need to simplify or we can say eationalize the denominator...
[tex] \sf \: lim_{x\to 0} \: (\frac{sin(2x) \times 2 \times 3x}{sin(3x) \times 2 \times 3x})[/tex]
- Use the commutative property to reorder the terms.
[tex] \sf \: lim_{x\to 0} \: (\frac{ 2 \times 3x \times sin(2x)}{3 \times 2x \times sin(3x)})[/tex]
- Separate the fraction into 3 fractions.
[tex] \sf \: lim_{x\to 0} \: ( \frac{2}{3} \times \frac{ \sin(2x) }{2x} \times \frac{3x}{ \sin(3x) } )[/tex]
[tex] \sf \: \frac{2}{3} \times 1 \times {1}^{ - 1} [/tex]
[tex] \boxed{ \tt \frac{2}{3}}[/tex]