Respuesta :

The dimensions (in m) maximize its volume  is  mathematically given as

[tex]x=\frac{4\sqrt{3}}{3}[/tex] m   for Lenght and Width

[tex]h=\frac{2\sqrt{3}}{3}[/tex] m  for height

What are the dimensions (in m) that maximize its volume.?

Generally, the equation for is  mathematically given as

The equation for the area is given as

[tex]A=x^2+4xh\\\\A=16=4xh\\\\ A=16-x^2[/tex]

[tex]h=\frac{16-x^2}{4x^2}[/tex]

Volume of box

[tex]V=x^2 *h\\\\V=x^2*(\frac{16-x^2}{4x^2})\\\\V=4x-x^3[/tex]

Therefore, by differentiating V and making x the subject of the formula we have

[tex]V'=4-\frac{3x^2}{4}[/tex]

Therefore, with V' =0

[tex]x^2=16/3[/tex]

[tex]x^2=\sqrt{16/3}\\\\x=\frac{4}{\sqrt{3}}\\\\[/tex]

[tex]x=\frac{4\sqrt{3}}{3}[/tex]

Now we will sub the value of x to the h equation

[tex]\begin{aligned}&h=\frac{16-(\frac{4}{\sqrt{3}})^2}{4 (\frac{4}{\sqrt{3}})} \\\\&h=\frac{16-\frac{16}{3}}{\frac{16}{\sqrt{2}}} \\\\&h=\frac{2 \sqrt{3}}{3} \mathrm{~m}\end{aligned}[/tex]

Now we differntite the derivate of V (V')

[tex]V''=\frac{-3x}{2}\\V''=\frac{3(\frac{4\sqrt{3}}{3})}{2} \\V''=-2\sqrt{3} < 0 \\\\[/tex] at maximium

In conclusion, the dimensions (in m) maximize its volume.

[tex]x=\frac{4\sqrt{3}}{3}[/tex]    for Lenght and Width

[tex]h=\frac{2\sqrt{3}}{3}[/tex]   for height

Read more about volume

https://brainly.com/question/1578538

#SPJ4