Respuesta :

Given in the picture that [tex]D=b^{2} -4ac[/tex].

(a) Express b in terms of a, c and D.

[tex]b=\sqrt{D-4ac}[/tex]

(b) Find the values of b when a=2, c=-2 and D=81.

[tex]b=\sqrt{65}[/tex]

By seeing the question we can say that the [tex]b^{2} -4ac[/tex] is in the quadratic formula.

We know the general Quadratic Equation is [tex]ax^{2}+bx+c=0[/tex].

The solution to find the root of the Quadratic Equation is Quadratic Formula: [tex]\frac{-b\pm\sqrt{b^{2}-4ac } }{2a}[/tex].

The whole solution is depend on [tex]b^{2} -4ac[/tex]. The team is called discriminant.

(a) Given that,

[tex]D=b^{2} -4ac[/tex]

[tex]b^{2}=D +4ac\\[/tex]

Taking square root on both sides.

[tex]\sqrt{b^{2} } =\sqrt{D+4ac}\\ b=\sqrt{D+4ac}\\[/tex]

Therefore, [tex]b=\sqrt{D-4ac}[/tex]

(b) Given that,

a=2,c=-2 and D=81

[tex]b=\sqrt{D+4ac}\\[/tex]

[tex]b=\sqrt{81+4(2)(-2)}\\[/tex]

[tex]b=\sqrt{81-16}[/tex]

[tex]b=\sqrt{65}[/tex]

Therefore, [tex]b=\sqrt{65}[/tex]

To learn more about Quadratic equation visit: https://brainly.com/question/1863222

#SPJ9