Respuesta :

Answer:

[tex]\textsf{23.} \quad c)\;\;y=-2x+7[/tex]

[tex]\textsf{24.} \quad 12[/tex]

[tex]\textsf{25.} \quad -2.33\:\:\sf (2\:d.p.)[/tex]

Step-by-step explanation:

Question 23

Given equation:

[tex]y=\dfrac{1}{2}x-1[/tex]

If two lines are perpendicular to each other, the slopes are negative reciprocals.  

Therefore, the slope of a line perpendicular to the given equation is -2.

Substitute the found slope and the given point (3, 1) into the point-slope formula to find the equation of the line:

[tex]\implies y-y_1=m(x-x_1)[/tex]

[tex]\implies y-1=-2(x-3)[/tex]

[tex]\implies y-1=-2x+6[/tex]

[tex]\implies y=-2x+7[/tex]

Question 24

Define the variables:

  • Let x = number of $20 bills.
  • Let y = number of $50 bills.

Given information:

  • Total amount cashed = $390
  • Total number of bills = 15

Create two equations with the given information:

[tex]\begin{cases}x+y=15\\20x+50y=390\end{cases}[/tex]

Solve the first equation for y:

[tex]\implies y=15-x[/tex]

Substitute the found expression for y into the second equation and solve for x:

[tex]\implies 20x+50(15-x)=390[/tex]

[tex]\implies 20x+750-50x=390[/tex]

[tex]\implies -30x+750=390[/tex]

[tex]\implies -30x=-360[/tex]

[tex]\implies x=12[/tex]

Therefore, Kerry received 12 twenty-dollar bills.

Question 25

Given expression:

[tex]\dfrac{6^2-4^2}{-10+\sqrt{2}}[/tex]

Following the order of operations (PEMDAS), simplify the numerator:

[tex]\implies \dfrac{36-16}{-10+\sqrt{2}}[/tex]

[tex]\implies \dfrac{20}{-10+\sqrt{2}}[/tex]

Calculate the square root:

[tex]\implies \dfrac{20}{-10+1.414213...}[/tex]

Simplify the denominator:

[tex]\implies \dfrac{20}{-8.5857864...}[/tex]

Divide the numerator by the denominator:

[tex]\implies -2.3294313...[/tex]

Therefore:

[tex]\implies \dfrac{6^2-4^2}{-10+\sqrt{2}}=-2.33\:\: \sf (2\:d.p.)[/tex]