Answer:
B = (7, 9)
Step-by-step explanation:
Midpoint between two points
[tex]\textsf{M}=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)[/tex]
Where (x₁, y₁) and (x₂, y₂) are the endpoints.
Given:
Substitute the coordinates into the formula:
[tex]\implies (x_M, y_M)=\left(\dfrac{x_B+x_A}{2},\dfrac{y_B+y_A}{2}\right)[/tex]
[tex]\implies (4.5, 6)=\left(\dfrac{x_B+2}{2},\dfrac{y_B+3}{2}\right)[/tex]
[tex]\implies (9,12)=\left(x_B+2,y_B+3\right)[/tex]
[tex]\implies (9-2,12-3)=\left(x_B,y_B\right)[/tex]
[tex]\implies (7,9)=\left(x_B,y_B\right)[/tex]
Therefore, the coordinates of B are (7, 9).