Solution:
Let the two numbers be
[tex]20\text{ and 10}[/tex]In scientific notation, the numbers are
[tex]\begin{gathered} 20=2\times10^1 \\ 10=1\times10^1 \end{gathered}[/tex]The sum of the numbers will be
[tex]=(2\times10^1)+(1\times10^1)=10^1(2+1)=10^1(3)=3\times10^1[/tex]Hence, the sum is
[tex]3\times10^1[/tex]The difference between the two numbers will be
[tex]=(2\times10^1)-(1\times10^1)=10^1(2-1)=10^1(1)=1\times10^1[/tex]Hence, the difference is
[tex]1\times10^1[/tex]The product of the numbers will be
[tex]=(2\times10^1)\cdot(1\times10^1)=(2\times1)(10^{1+1})=2(10^2)=2\times10^2[/tex]Hence, the product is
[tex]2\times10^2[/tex]The quotient of the numbers will be
[tex]=\frac{2\times10^1}{1\times10^1}=\frac{2}{1}\times(10^{1-1})=2(10^0)=2\times10^0[/tex]Hence, the quotient is
[tex]2\times10^0[/tex]