Respuesta :

SOLUTION

Write out the given point

[tex]\begin{gathered} (4,3) \\ \text{and } \\ (8,0) \end{gathered}[/tex]

The equation of the line passing through the point above will be obtain by following the steps

Step1: Obtain the slope of the line

[tex]\begin{gathered} \text{slope,m}=\frac{y_2-y_1}{x_2-x_1} \\ \text{Hence } \\ x_1=4,x_2=8 \\ y_1=3,y_2=0 \end{gathered}[/tex]

Substituting the values we have

[tex]\begin{gathered} \text{slope,m}=\frac{0-3}{8-4}=-\frac{3}{4} \\ \text{Hence } \\ m=-\frac{3}{4} \end{gathered}[/tex]

Step 2: Obtain the y- intercept

The y-intercept is the point where the graph touch the y, axis

[tex]\begin{gathered} \text{slope, m=-3/4} \\ y=6 \\ y-intercept=6 \end{gathered}[/tex]

Steps 3; use the slope intercept rule

[tex]\begin{gathered} y=mx+b \\ \text{Where m=-3/4,b=y-intercept} \\ \text{Then } \\ y=-\frac{3}{4}x+6 \end{gathered}[/tex]

Hence

The equation in slope intercept form is

y = - 3/4 x + 6