Compute the area of each triangle. Round to the nearest tenth.

The triangle ΔDEF has the following coordinates
[tex]\lbrace D(-1,6),E(-4,-6),F(3,-5)\rbrace[/tex]To find the area of a triangle in coordinate geometry, we have a formula. Given 3 vertices A(x1, y1), B(x2,y2) and C(x3,y3), the area of this triangle is given by
[tex]Area(\Delta ABC)=\frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|[/tex]Using this formula for our problem, we have
[tex]Area_{\Delta DEF}=\frac{1}{2}|(-1)((-6)-(-5))+(-4)((-5)-6)+3(6_{}-(-6))|[/tex]Solving this equation, we have
[tex]\begin{gathered} Area_{\Delta DEF}=\frac{1}{2}|(-1)((-6)-(-5))+(-4)((-5)-6)+3(6_{}-(-6))| \\ =\frac{1}{2}|(-1)((-6+5)+(-4)(-5-6)+3(6_{}+6)| \\ =\frac{1}{2}|(-1)(-1)+(-4)(-11)+3(12)| \\ =\frac{1}{2}|1+44+36| \\ =\frac{1}{2}|81| \\ =\frac{81}{2} \\ =40.5 \end{gathered}[/tex]And this is our answer Area(ΔDEF) = 40.5