Respuesta :

Assume that the width of the rectangle = x

Since the length is twice the sum of the width and 3, then

[tex]\begin{gathered} L=2(x+3) \\ L=2x+6 \end{gathered}[/tex]

Since the area of the rectangle is 216 square inches, then

Multiply the length and the width, then equate the product by 216

[tex]\begin{gathered} (x)(2x+6)=216 \\ 2x^2+6x=216 \end{gathered}[/tex]

Divide all terms by 2 to simplify

[tex]\begin{gathered} \frac{2x^2}{2}+\frac{6x}{2}=\frac{216}{2} \\ x^2+3x=108 \end{gathered}[/tex]

Subtract 108 from both sides

[tex]\begin{gathered} x^2+3x-108=108-108 \\ x^2+3x-108=0 \end{gathered}[/tex]

Now, let us factorize the trinomial into 2 factors

[tex]\begin{gathered} x^2=(x)(x) \\ -108=(-9)(12) \\ (x)(-9)+(x)(12)=-9x+12x=3x \end{gathered}[/tex]

Then the factors are

[tex]x^2+3x-108=^{}(x-9)(x+12)[/tex]

Equate them by 0

[tex](x-9)(x+12)=0[/tex]

Equate each factor by 0, then find the values of x

[tex]x-9=0[/tex]

Add 9 to both sides

[tex]\begin{gathered} x-9+9=0+9 \\ x=9 \end{gathered}[/tex][tex]x+12=0[/tex]

Subtract 12 from both sides

[tex]\begin{gathered} x+12-12=0-12 \\ x=-12 \end{gathered}[/tex]

Since the width can not be a negative number (no negative length)

Then the width of the rectangle = 9

Let us find the length

[tex]\begin{gathered} L=2(9)+6 \\ L=18+6 \\ L=24 \end{gathered}[/tex]

Then the dimensions of the rectangle are 9 inches and 24 inches