A local children's center has 46 children enrolled, and 6 are selected to take a picture for the center'sadvertisement. How many ways are there to select the 6 children for the picture?

Respuesta :

The question requires us to find how many ways we can select 6 children from a total of 46.

The formula for combinations is given as follows;

[tex]nC_r=\frac{n!}{(n-r)!r!}[/tex]

Where n = total number of children, and r = number of children to be selected. The combination now becomes;

[tex]\begin{gathered} 46C_6=\frac{46!}{(46-6)!6!} \\ 46C_6=\frac{46!}{40!\times6!} \\ 46C_6=\frac{5.5026221598\times10^{57}}{8.1591528325\times10^{47}\times720} \\ 46C_6=\frac{5.5026221598\times10^{10}}{8.1591528325\times720} \\ 46C_6=\frac{0.674410967996781\times10^{10}}{720} \\ 46C_6=\frac{6744109679.967807}{720} \\ 46C_6=9,366,818.999955287 \\ 46C_6=9,366,819\text{ (rounded to the nearest whole number)} \end{gathered}[/tex]