Respuesta :

Given:

[tex]\begin{gathered} F(x)=\sqrt{x-5}+4 \\ G(x)=(x-4)^2+5 \end{gathered}[/tex]

Required:

Find F(x) and G(x) are inverse functions or not.

Explanation:

Given that

[tex]\begin{gathered} F(x)=\sqrt{x-5}+4 \\ G(x)=(x-4)^{2}+5 \end{gathered}[/tex]

Let

[tex]F(x)=y[/tex][tex]\begin{gathered} y=\sqrt{x-5}+4 \\ y-4=\sqrt{x-5} \end{gathered}[/tex]

Take the square on both sides.

[tex](y-4)^2=x-5[/tex]

Interchange x and y as:

[tex]\begin{gathered} (x-4)^2=y-5 \\ y=(x-4)^2+5 \end{gathered}[/tex]

Substitute y = G(x)

[tex]G(x)=(x-4)^2+5[/tex]

This is the G(x) function.

So F(x) and G(x) are inverse functions.

[tex]\begin{gathered} G(x)-5=(x-4)^2 \\ \sqrt{G(x)-5}=x-4 \\ x=\sqrt{G(x)-5}+4 \end{gathered}[/tex]

Final Answer:

Option A is the correct answer.