Use the sample data and confidence level given below to complete parts (a) through (d). A drug is used to help prevent blood clots in certain patients. In clinical trials, among 4519 patients treated with the drug. 133 developed the adverse reaction of nausea Construct a 90% confidence interval for the proportion of adverse reactions. a) Find the best point estimate of the population proportion p.

Respuesta :

We will have the following:

*First: We determine the standard deviation of the statistic, this is:

[tex]\sigma=\sqrt[]{\frac{\sum ^{133}_1(x_i-\mu)^2}{N}}[/tex]

So, we will have:

[tex]\mu=\frac{\sum^{133}_1x_i}{N}\Rightarrow\mu=\frac{8911}{133}\Rightarrow\mu=67[/tex]

Then:

[tex]\sigma=\sqrt[]{\frac{\sum^{133}_1(x_i-67)^2}{133}}\Rightarrow\sigma=\sqrt[]{\frac{196042}{133}}\Rightarrow\sigma=\sqrt[]{1474}\Rightarrow\sigma=38.39270764\ldots[/tex]

And so, we obtain the standar deviation.

*Second: We determine the margin of error:

[tex]me=cv\cdot\sigma[/tex]

Here me represents the margin of error, cv represents the critical value and this is multiplied by the standard deviation. We know that the critica value for a 90% confidence interval is of 1.645, so:

[tex]me=1.645\cdot38.39270764\ldots\Rightarrow me=63.15600407\ldots\Rightarrow me\approx63.156[/tex]

*Third: We determine the confidence interval as follows:

[tex]ci=ss\pm me[/tex]

Here ci is the confidence interval, ss is the saple statistic and me is the margin of error:

[tex]ci\approx133\pm63.156\Rightarrow ci\approx(69.844,196.256)[/tex]

And that is the confidence interval,