Respuesta :

ANSWER

[tex]-\frac{5}{13}-\frac{14i}{13}[/tex]

EXPLANATION

We want to divide the given complex fraction:

[tex]\frac{4+i}{-2+3i}[/tex]

To do this, we have to rationalize the denominator of the fraction by multiplying the given fraction by another fraction made up of the conjugate of the denominator of the given fraction:

[tex]\frac{4+i}{-2+3i}\cdot\frac{-2-3i}{-2-3i}[/tex]

Simplifying this, we have:

[tex]\begin{gathered} \frac{(4+i)(-2-3i)}{(-2+3i)(-2-3i)} \\ \Rightarrow\frac{-8-12i-2i+3}{4+6i-6i+9} \\ \frac{-8+3-12i-2i}{13}=\frac{-5-14i}{13} \\ \Rightarrow-\frac{5}{13}-\frac{14i}{13} \end{gathered}[/tex]

That is the solution of the division.